微生物用 アガロースゲル・ マイクロカプセルの開発

CTS?

株式会社 東陽テクニカ ワン・テクノロジーズ・カンパニー

[•]はかる^{*}技術で未来を創る **ア東陽テクニカ**

©TOYO Corporation

Microbiome

2022/12/14

Genome Analysis of Yet-uncultured Bacteria

Suppression of Amplification Bias

Genomic Position [Mbp]

アガロースゲル・マイクロカフ[®]セル (AGM)

Stable Emulsion for Agarose Shell Gelation

Control: Isostearyl alcohol (ISA, d = 0.84 g/mL)

(**: *P* < 0.01)

Agarose Gel Microcapsule

Equipment

Preparation

- Vortex Mixer
- Angle-rotor Centrifuge (15 mL and 50 mL) or Swing-rotor Centrifuge (50 mL)
- Pipette Aid
- Pipetteman
- Electric Balance

Observation

• Fluorescent Microscope

Isolation

 Micromanipulator or Plpetteman and Microscope

Samples

Escherichia coli

Mock

No.	Strain	No.	Strain
No. 1	Bacteroides thetaiotaomicron	No. 9	Megasphaera elsdenii
No. 2	Blautia producta	No. 10	Parabacteroides distasonis
No. 3	Catenibacterium mitsuokai	No. 11	Prevotella copri
No. 4	Clostridium bolteae	No. 12	Roseburia faecis
No. 5	Collinsella aerofaciens	No. 13	Ruminococcus gnavus
No. 6	Faecalibacterium prausnitzii	No. 14	Streptococcus mutans
No. 7	Flavonifractor plautii	No. 15	Veillonella tobetsuensis
No. 8	Megamonas funiformis		

Termite Gut Microbiome

Cell Density

0 cells

3.05 x 10⁶ cells

3.05 x 10⁷ cells

3.05 x 10⁸ cells

100 µm

AGM Library

Total	53.2	± 36.8	×10 ⁵ particle/batch
E. coli +	5.6	± 1.7	×10 ⁵ particle/batch
	12.5	± 5.4	%
Single cell / E. coli +	93.8	± 8.8	%
Diameter	45.5	± 8.3	μm
Core	23.7	± 11.1	pL
Shell	7.6	± 2.7	μm

MDA

(Repli-g UltraFast Mini Kit, Qiagen)

SYBR Green I / Phase Contrast 100 µm

WGA +	4.6	±	2.9	×10 ⁵ particle/batch
	8.9	±	0.9	%
WGA + / E. coli +	93.8	±	8.8	%

Genome Sequencing

MiSeq (Illumina)

Data Analysis

Completeness and Contigs of *E. coli* at Different Coverages

(**: *P* < 0.01. *: *P* < 0.05)

Heat Map of E. coli

Lorenz Curve and Gini Coefficient

Mock

	MDA-in-AGM			FACS-MDA			
Strain	SAG	Genome completeness (%)	Contamination (%)	SAG	Genome completeness (%)	Contamination (%)	
Bacteroides thetaiotaomicron	12	$\textbf{67.9} \pm \textbf{22.0}$	$\textbf{1.9}\pm\textbf{1.2}$	15	53.7 ± 19.6	$\textbf{0.8} \pm \textbf{1.1}$	
Blautia producta	9	74.5 ± 16.2	$\textbf{1.6}\pm\textbf{0.9}$	3	$\textbf{19.1}\pm\textbf{8.7}$	$\textbf{0.1}\pm\textbf{0.1}$	
Catenibacterium mitsuokai	2	97.1	0.9	n. d.	n. d.	n. d.	
Clostridium bolteae	n. d.	n. d.	n. d.	2	37.9	0.0	
Collinsella aerofaciens	n. d.	n. d.	n. d.	n. d.	n. d.	n. d.	
Faecalibacterium prausnitzii	n. d.	n. d.	n. d.	n. d.	n. d.	n. d.	
Flavonifractor plautii	n. d.	n. d.	n. d.	1	19.0	3.5	
Megamonas funiformis	4	$\textbf{73.5} \pm \textbf{39.6}$	$\textbf{2.0} \pm \textbf{1.2}$	3	89.5 ± 7.7	1.2 ± 0.5	
Megasphaera elsdenii	n. d.	n. d.	n. d.	n. d.	n. d.	n. d.	
Parabacteroides distasonis	8	84.4 ± 12.6	2.2 ± 1.3	6	44.9 ± 23.0	$\textbf{0.7}\pm\textbf{0.7}$	
Prevotella copri	2	88.5	1.8	4	54.0 ± 6.8	$\textbf{1.2}\pm\textbf{1.4}$	
Roseburia faeccis	1	28.1	1.7	n. d.	n. d.	n. d.	
Ruminococcus gnavus	1	81.5	2.5	1	54.1	1.2	
Streptococcus mutans	1	97.8	1.1	n. d.	n. d.	n. d.	
Veillonella tobetsuensis	n. d.	n. d.	n. d.	2	75.9	0.4	
Total	40			37			

n. d.: not detected

Termite Gut Microbiome

	MDA-in-AGM			FACS-MDA [†]			
Taxon of bacteria	SAG	Genome completeness (%)	Contamination (%)	SAG	Genome completeness (%)	Contamination (%)	
Spirochaetia	15	73.5 ± 20.6	0.9 ± 1.1	35	32.5 ± 19.0	0.3 ± 0.6	
Bacteroidia	8	88.2 ± 8.7	1.3 ± 0.7	51	36.1 ± 17.7	0.6 ± 1.2	
Alphaproteobacteria	2	87.0	0.0	8	52.9 ± 19.5	0.9 ± 1.7	
Betaproteobacteria	7	87.5 ± 5.9	1.2 ± 0.3	9	35.3 ± 12.6	0.9 ± 0.8	
Deltaproteobacteria	3	86.4 ± 6.7	0.5 ± 0.3	3	22.8 ± 16.7	1.1 ± 0.6	
Epsilonproteobacteria	2	55.0	2.2	2	38.8	1.2	
Clostridia	4	70.2 ± 23.6	1.3 ± 0.4	27	36.7 ± 16.2	0.7 ± 1.1	
Actinobacteria	1	51.9	0.87	3	33.5 ± 15.9	1.9 ± 1.7	
Planctomycetales	1	87.1	0.1	11	42.6 ± 21.0	0.6 ± 0.8	
Synergistia	2	83.9	1.2	4	65.5 ± 21.9	0.2 ± 0.3	
Fibrobacteria	1	72.8	0.0	n. d.	n. d.	n. d.	
Deferribacteres	1	72.9	2.0	n. d.	n. d.	n. d.	
Candidate division SR1	1	74.1	0.0	n. d.	n. d.	n. d.	
Bacilli	n. d.	n. d	n. d.	8	47.2 ± 23.2	1.4 ± 2.0	
Endomicrobia [*]	18	91.2 ± 9.8	1.5 ± 1.0	n. t.	n. t.	n. t.	
Total	48 (66)	78.6 ± 18.2 (82.0 ±17.2)	1.0 ± 1.0 (1.1 ± 1.0)	161	37.7 ± 19.0	0.7 ± 1.1	

n. d.: not detected. n. t.: not tested.

t: DNA libraries were made using Nextera XT (Illumina) and read using HiSeq (Illumina).

(): including Endomicrobia

Suppression of Amplification Bias using AGM

Conclusions

- AGM, a microcapsule consisting of a sol core and a hydrogel shell, was developed to SCG using stable shell gelation with emulsion oil of water-equivalent density.
- AGM **suppressed amplification bias** using one-cycle pL-scale MDA.
- AGM will allow many researchers easily to obtain high quality SAGs, and can accelerate genomic analysis of yet-uncultured microorganisms.

AGM Picker

Manual Picking

Automatic Picking

- 50—100 µm AGM Core
- Motorized Components
- Transfer Single AGM in a microtube or microplate

Throughput Improvement

• Fluorescent Quantification

Anaerobic culture and isolation

Optics

Fluorescent Filter

Optimisation of Condenser Lens using Zemax

LED

High-sensitive CMOS Camera

(The Imaging Source, DBK37BUX178, using SONY CMOS Stavis IMX178)

Fluorescent Beads (4 µm)

Objective Lens

(Olympus, (Olympus, PLN10XPH) LUCPLFLN40XPH)

Achromatic Lens

Fix-focus Lens

UV ex: Blue, B ex: Green, YG ex: Red

100 µm

Picking

Tokyo Institute of Tokyo

School of Life Science and Technology Yuichi Hongoh

Tokyo Tech

TOYO Corporation

Financial Supports

- RIKEN
- FY2019 Engineering Network
- Pioneering Project "Biology of Symbiosis"
- FY2019 Incentive Research Project
- JSPS KAKENHI
- Grant Number 16K07224
- TOYO Corporation

Termite Gut Microbiome

Yet-uncultured Bacteria

(Hongoh, 2008)

- Highly Efficient Utilization of Plant Biomass
- Complex Symbiosis between bacteria, protozoa, and host

AGM[™]試薬キット製造販売元 株式会社東陽テクニカ ワン・テクノロジーズ・カンパニー