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Introduction 
The problem of determining intrinsic 
fi lm properties from indentation data 
that are infl uenced by both fi lm and 
substrate is an old one. If the fi lm is 
thick enough to be treated as a bulk 
material, then the analysis of Oliver 
and Pharr (1992) is typically used [1]. 
When the fi lm is so thin that indentation 
results at all practical depths are 
substantially affected by the substrate, 
the infl uence of the substrate must be 
accurately modeled in order to extract 
the properties of the fi lm alone. Since 
1986, many such models have been 
proposed [2-12]. 

In 1992, Gao, Chiu, and Lee proposed 
a simple approximate model for 
substrate infl uence. They derived two 
functions, I0 and I1, to govern the 
transition in elastic properties from 
fi lm to substrate [5]. Beginning with his 
Ph.D. dissertation in 1999, Song and his 
colleagues took an alternate solution 
path which was originally suggested by 
Gao et al. but not followed [7-9]. This 
alternate path yielded a simpler model 
which is called the “Song-Pharr model” 
in the literature. The Song-Pharr model 
predicts substrate effect reasonably 
well when the fi lm is more compliant 
than the substrate. Unfortunately, 
none of the available models works 
well when the fi lm is stiffer than the 
substrate. This shortcoming motivated 
the present work. 

Finite-element analysis (FEA) is 
essential to the development and 
verifi cation of analytic contact models, 
because FEA idealizes experiment. In a 
fi nite-element model, the fi lm thickness, 
fi lm properties, and substrate properties 
are all well known, because they are 
required inputs. Also, there is little 
ambiguity about the true contact area 
under load, because it is determined 
from the last node(s) in contact. So 
before turning to experimentation, 
the worth of an analytic model is fi rst 
assessed by means of FEA. For 
example, an elastic fi nite-element 
model may be constructed with a fi lm 
of thickness t on a substrate, with the 
input properties being the Young’s 
modulus and Poisson’s ratio of the fi lm 
(Ef, f), and the Young’s modulus and 
Poisson’s ratio of the substrate (Es, s). 
Then, indentation into the material is 
simulated, and the simulated force-
displacement data are analyzed in 
order to achieve a value for the Young’s 
modulus of the fi lm, i.e. Ef-out. What 
is the difference between this output 
value and the value that was used as an 
input to the fi nite-element model? FEA 
allows this question to be answered 
systematically over the domain of 
situations that might be encountered 
experimentally: thick fi lms, thin fi lms, 
stiff fi lms on compliant substrates, 
compliant fi lms on stiff substrates, etc. 
If an analytic model applied to simulated 
data fails to return the input properties 
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with suffi cient accuracy, it should not 
be expected to work well when applied 
to experimental data. 

Indentation into a fi lm-substrate 
system generally does not produce a 
contact of the same shape as would be 
achieved in a semi-infi nite body having 
the same properties as the fi lm [13]. 
Thus, the analysis of Oliver and Pharr 
[1] for predicting contact area may not 
yield a suffi ciently accurate measure of 
the true contact area. When the fi lm is 
more compliant than the substrate, the 
tendency is for the fi lm material to “pile-
up” around the face of the indenter, 
meaning that the Oliver-Pharr analysis 
will underpredict the true contact 
area [13]. If the fi lm is stiffer than the 
substrate, the tendency is for the fi lm 
to be pressed into the substrate well 
outside the contact area, meaning that 
the Oliver-Pharr analysis will overpredict 
the true contact area [14]. These 
phenomena are evident in FEA, but they 
do not present a problem, because the 
contact area is obtained from the mesh. 
But these phenomena can present a 
practical problem for the experimenter. 
Finite-element simulations can be used 
to identify experimental conditions 
under which such problems may arise. 

In the present work, a new analytic 
model is presented that is informed by 
and improves upon previous analytic 
models. The new model is tested 
and refi ned by FEA over the domain 
0.1 < Ef/Es < 10 and 4% < h/t < 40%. 
The simulations are also used to 
identify the conditions under which the 
Oliver-Pharr analysis for determining 
contact error should be expected to 
work well. This analytic work prepares 
the way for future experimental 
verifi cation of the model.

Theory 
The present model is a development of 
the Song-Pharr model, which in turn, 
draws from the Gao model. The Song-
Pharr model is illustrated schematically 
in Figure 1. It assumes that a column of 
material under the indenter, defi ned by 
the contact radius, can be isolated from 
the surrounding material, and treated as 
two springs in series, with the infl uence 
of each spring weighted according to 

a/t through the function I0. Thus, the 
measured (or apparent) shear modulus 
(µa) is related to the shear modulus of 
the fi lm (µf) and that of the substrate 
(µs) through this expression: 

    (Eq. 1)

The weighting function, I0, is that 
of Gao et al [5]. It provides a smooth 
transition from fi lm to substrate. When 
I0 is unity, as it is when the contact is 
small relative to the fi lm thickness, then 
µa = µf. As the penetration increases, 
the value of I0 approaches zero, which 
makes µa = µs. The function I0 is plotted 
in Figure 2 and given by
 
  

     
   (Eq. 2)

2

Figure 1.  Schematic of the Song-Pharr model which assumes that material under the indenter can 
be isolated from surrounding material and treated as springs in series.  

Unfortunately, the limit of µf  ∞ 
poses a problem for the Song-Pharr 
model [9]. As the fi lm modulus becomes 
large, the apparent compliance (1/µa) 
should go to zero, but Eq. 1 does not 
predict this. Rather, it predicts that the 
apparent compliance will be governed 
by the compliance of the substrate, 
meaning that the apparent compliance 
calculated by Eq. 1 will be too large. 
The root cause of the problem is that 
as µf   ∞, the material under the 
indenter cannot be isolated from the 
surrounding material, because the 
fi lm offers signifi cant lateral support. 
The behavior is like that of a steel 
drum: upon being struck, the response 
is governed primarily by the drum 
skin—its elastic properties, thickness, 
and boundaries—not by the near-zero 
compliance of the air underneath the 
drum skin. 

Figure 2.  Gao’s weighting functions I0 and I1 which govern the fi lm-to-substrate transition for 
shear modulus and Poisson’s ratio, respectively.
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Table I.  Summary of fi nite-element simulations, showing values for inputs that were varied. For all 
simulations the indenter was a 2-dimensional version of a Berkovich diamond. For the sample, 
t = 500 nm, Ef = 10 GPa, and f = s = 0.25.  

To improve upon the Song-Pharr model, 
we suppose that phenomenologically, 
the fi lm can also act as a spring in 
parallel with the substrate as illustrated 
schematically in Figure 3. There are 
several ways to consider the sense 
of this confi guration. First, as the 
fi lm becomes stiff, it dominates the 
response, and this is what happens 
with parallel springs—the stiffer spring 
dominates. Second, as the fi lm becomes 
thin and stiff, the deformation in the 
top layer of the substrate approaches 
that of the fi lm. If two springs of 
different stiffness experience the same 
deformation subject to the same force, 
then they should be modeled as parallel. 
Finally, if the fi lm provides signifi cant 
lateral support, then it effectively acts 
on the indenter like the leaf springs 
which support the indenter column, and 
these leaf springs are well modeled by a 
parallel spring. 

Springs in parallel are treated together 
by adding their stiffnesses. Thus, the 
proposed model is: 

        (Eq. 3)

In the denominator of the fi rst term on 
the right-hand side, the infl uence of 
the fi lm modulus is moderated by two 
factors: I0 and F. The moderation with 
I0 makes the fi lm infl uence degrade with 
depth. We also allow for moderation 
with the tunable constant, F, because 
we don’t know, a priori, the importance 
of fi lm modulus relative to that of the 
substrate. We shall determine the best 
value for the constant F using fi nite-
element analysis.

Eq. 3 gives us the right behavior in the 
limits of I0  1, I0  0, µf << µs, 
and µf >> µs. When I0 is close to 1, as 
it is at shallow penetration depths, the 
apparent modulus approaches that of 
the fi lm. As I0 approaches 0, as it does 
at large depths, the apparent modulus 
approaches the substrate modulus. In 
the case of a compliant fi lm on a rigid 
substrate (µf << µs), Eq. 3 reduces to the 
Song-Pharr model (Eq. 1) for all values of 
I0. Finally, when the fi lm modulus is very 
large, the apparent compliance goes to 
zero for all values of I0, as it should.

Thus, the shear modulus of the fi lm is 
calculated from the apparent value by 
solving Eq. 3 for µf :

    , where        (Eq. 4)

 A = FI0 
 B = µs – (FI0

2 – I0 + 1)µa
 C = - I0 µaµs 

Finally, the Young’s modulus of the fi lm 
is calculated from the shear modulus 
and Poisson’s ratio as 
        (Eq. 5)

Calculation of µa from standard 
indentation results for use in Eq. 3 
requires a value for Poisson’s ratio. 
The weighting function I0 also utilizes 
Poisson’s ratio. But what value should 
be used—that of the fi lm or that of the 
substrate? To be sure, this problem 
is of second order, but Gao et al. also 
provided a weighting function, I1, for 
handling the transition in Poisson’s 
ratio, so that the apparent Poisson’s 
ratio, a, is calculated as

 . (Eq. 6)

Eq. 6 provides the value for Poisson’s 
ratio used in the calculation of µa and 

I0 [7-9]. It should be noted that if fi lm 
and substrate have the same Poisson’s 
ratio (that is, if s = f = ), then Eq. 6 
reduces to a = . Gao’s function I1 is 
also plotted in Figure 2 and given by 

 .    (Eq. 7)

Finite-element Analysis
Seventy axisymmetric fi nite-element 
simulations were performed using 
Cosmos 2.8. These simulations are 
summarized in Table 1. An updated 
Lagrangian formulation was used to 
handle potentially large strains. The 
solution was achieved in discrete time 
steps. At each time step, the solution 
was found by force control with 
Newton-Raphson iteration. 

Some simulation inputs were fi xed, 
and some were systematically varied 
in order to investigate the domain of 
interest. The fi lm thickness was set to 
500nm for all simulations; indentation 
depth was varied in order to investigate 
the domain of 4% < h/t < 40%. All 
indented materials, both fi lm and 
substrate, were assigned a Poisson’s 
ratio ( ) of 0.25 and a linear-elastic 
stress-strain curve. (Thus, neither the 
effect of plasticity nor of transition in 
Poisson’s ratio was investigated by 
FEA.) The Young’s modulus of the fi lm 
was fi xed at 10GPa. To achieve the 
desired variation in Ef/Es, the substrate 
modulus varied between 100GPa 
(Ef/Es = 0.1) and 1GPa (Ef/Es = 10). 
Because Poisson’s ratio was set to 0.25 
for all materials, the modulus ratios are 
the same whether expressed in terms of 
Young’s modulus or shear modulus, i.e. 
µf /µs = Ef /Es. 

Figure 3.  Schematic of the proposed model 
allowing the fi lm to act in series and in parallel 
with the substrate.  

 Simulation Es, GPa  Maximum indenter displacement (h), nm

 1-10 100 20 40 60 80 100 120 140 160 166 174
 11-20 50 20 40 60 80 100 120 140 160 166 184
 21-30 20 20 40 60 80 100 120 140 160 180 200
 31-40 10 20 40 60 80 100 120 140 160 180 200
 41-50 5 20 40 60 80 100 120 140 160 180 200
 51-60 2 20 40 60 80 100 120 140 160 180 200
 61-70 1 20 40 60 80 100 120 140 160 180 200



The purpose of simulations 31-40 was 
to verify the fi nite-element model. For 
these simulations, the fi nite-element 
model had the mesh of a fi lm-substrate 
system, but with fi lm and substrate 
having the same modulus (i.e. 
Ef = Es = 10GPa), and so behaving as a 
bulk sample. Thus, the intention was to 
verify the general fi nite-element model 
by showing that for simulations 31-40, 
standard analysis of simulated data 
yields an output modulus that is very 
close to the input value. 

For all simulations, the indenter was a 
cone having an included angle of 140.6° 
and an apical radius of 50nm. This 
shape is the two-dimensional analogue 
of the common Berkovich indenter. The 
indenter was defi ned to be a linear-
elastic material having the properties of 
diamond: E = 1140GPa and i = 0.07.

Both the indenter and the sample were 
meshed with four-node axisymmetric 
plane strain elements. For the sample, 
the extent of the mesh was 90a’ in both 
the radial and axial directions, where 
a’, the anticipated contact radius, was 
calculated as the radius of the indenter 
at a distance from the apex that is equal 
to the specifi ed indentation depth. The 
radial extent of the fi ne mesh near the 
contact was 1.2a’. The radial extent of 
the indenter mesh was 45a’, and the 
axial extent was 90a’. 

The boundary conditions were specifi ed 
as follows. Along the right-hand side 
and bottom of the sample, all nodes 
were rigidly fi xed. Along the axis of 
symmetry (the left hand side of both 
the indenter and sample), nodes were 
constrained to move along the axis of 
symmetry only (µx = 0). Nodes along 
the top of the indenter were displaced 
downward by the total prescribed 
displacement which took place in 
discrete time steps. Nodes along the 
right-hand side of the indenter were 
unconstrained. The interaction between 
the indenter and the sample was 
handled as follows. The nodes along the 
indenter form a curve. Surface nodes on 
the sample were not allowed to pass to 
the other side of this curve (line-contact 
formulation). No slip was allowed 
between fi lm and substrate.

Results
We can have confi dence in the fi nite-
element results, because application of 
standard analysis to the simulated data 
from runs 31-40 (for which Ef /Es = 1) 
yields an output modulus that differs 
from the input value by no more than 
1%. This close agreement is achieved 
by using contact area as calculated 
from the fi nite-element mesh, not as 
calculated by the Oliver-Pharr method. 

One aspect of “substrate effect” is the 
extent to which the substrate affects 
the ability to determine contact area by 
the Oliver-Pharr method [1]. Figure 4 
shows the Oliver-Pharr contact area 
relative to the fi nite-element area for 
all simulations. Values less than unity 
indicate pile-up, and values greater 
than unity indicate excessive sink-in. 
For simulations 31-40, the Oliver-Pharr 
method yields a contact area that is 
within 3% of the fi nite-element area; 
this agreement is excellent, given the 
simplicity of the calculation. 

The error in the contact area achieved 
by the Oliver-Pharr method depends 
on whether the fi lm or substrate is 
more compliant, the degree of modulus 
mismatch, and the indentation depth 
relative to the fi lm thickness. The 
compliant fi lms on stiff substrates 
exhibit a tendency to pile-up, meaning 
that the areas calculated from the 
Oliver-Pharr method are too small, with 

the severity of the problem increasing 
with the degree of modulus mismatch 
and indentation depth. The stiff fi lms on 
compliant substrates exhibit a tendency 
to sink-in excessively, meaning that the 
areas calculated from the Oliver-Pharr 
method are too large. Again, the error 
magnitude increases with the degree 
of modulus mismatch and indentation 
depth. However, for the same degree 
of mismatch and relative indentation 
depth, the error for stiff fi lms is much 
greater than for compliant fi lms. 

Figure 4 allows us to predict the error 
in modulus due to shortcomings in the 
Oliver-Pharr method for determining 
contact area. The corresponding error 
in modulus is half the magnitude of the 
error in contact area and of the opposite 
direction, because the calculation 
for modulus from indentation data 
depends inversely on the square root 
of contact area (1/√A). For example, 
if the calculated contact area is 10% 
larger than the true contact area, the 
resulting value of modulus will be 5% 
smaller than the true modulus. For 
compliant fi lms (0.1 ≤ Ef /Es < 1), the 
error in modulus should be less than 
about 5% if the indentation depth is 
less than 10% of the fi lm thickness. For 
moderately stiff fi lms (1 < Ef /Es ≤ 2), 
the error in modulus should be less than 
5% so long as the indentation depth is 
less than 20% of the fi lm thickness. For 
very stiff fi lms (Ef /Es > 2) the error due 

Figure 4.  Evaluation of the ability to calculate contact area by the Oliver-Pharr method as a function 
of fi lm/substrate mismatch and indentation depth. For Ef/Es = 1, the Oliver-Pharr method gives a 
contact area that is within 3% of the fi nite-element value.  
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to the area calculation is substantial 
at all practical indentation depths. For 
such samples, the Oliver-Pharr method 
for determining contact area should not 
be used.  

Another aspect of “substrate effect” 
is the composite response of the fi lm 
and substrate to the indentation force. 
Figure 5 shows the inverse of the 
apparent shear modulus (hereafter: 
apparent compliance) as a function 
of normalized contact radius for fi lm/
substrate systems having the most 
severe modulus mismatch (Ef /Es = 0.1 
and Ef /Es = 10). The centerline marks 
the true value for the fi lm—that is, the 
fi nite-element input value. Results for 
stiff fi lms on compliant substrates are 
plotted in grey above this centerline; 
results for compliant fi lms on stiff 
substrates are plotted below. The 
open symbols are the values obtained 
from the fi nite-element simulations. 
Each plotted point represents a single 
simulation of pressing the indenter 
into the fi lm to a prescribe depth and 
withdrawing it, then analyzing the 
simulated force-displacement data in 
the usual way, but using contact area 
as calculated from the fi nite-element 
mesh. The dashed curves show the 
apparent compliance as predicted by 
the Song-Pharr model (Eq. 1), given 
the fi lm thickness, material properties, 
and contact geometry. The solid curves 
show the apparent compliance as 
predicted by the new model (Eq. 3), 
given the same information, and a single 
value for the empirical constant of 
F = 0.0626. (The means by which F was 
determined are explained subsequently.) 
For compliant fi lms on stiff substrates, 
the Song-Pharr model and the new 
model are indistinguishable; they predict 
the fi nite-element results equally 
well. But for stiff fi lms on compliant 
substrates, the new model provides a 
much better prediction of fi nite-element 
results. Rar, Song, and Pharr published 
a nearly identical plot comparing their 
own fi nite-element simulations (via 
ABAQUS) to the Song-Pharr model [8].  

The new model expressed by Eq. 3 
allows us to compute the Young’s 
modulus of the fi lm by Eq. 5 with 
F = 0.0626. Figure 6 shows Young’s 
modulus vs. normalized penetration for 

the 30 simulations of indentation into 
compliant fi lms on stiff substrates (sims 
1-30). All values have been computed 
using contact area as determined by the 
fi nite-element mesh. The solid symbols 
represent the substrate-affected 
modulus that would be obtained by 
standard analysis. The open symbols 
represent the fi lm modulus as computed 
by Eq. 5. The values for fi lm modulus 

Figure 5.  Comparison between two models and fi nite-element results for the fi lm/substrate 
systems having the most severe modulus mismatch. For compliant fi lms, the Song-Pharr model and 
the new model are the same; for stiff fi lms, the new model is substantially better than the Song-
Pharr model at predicting apparent compliance.

Figure 6.  Young’s modulus vs. normalized indentation depth for 30 simulations of indenting into 
compliant fi lms (E = 10GPa) on stiff substrates. Solid symbols are substrate-affected results 
obtained by standard analysis; open symbols are the Young’s modulus of the fi lm, computed by Eq. 5.
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determined in this way agree well with 
the FEA input value of 10GPa, even for 
penetration depths as large as 40% 
of the fi lm thickness. Figure 7 shows 
analogous results for the 30 simulations 
of indentation into stiff fi lms on 
compliant substrates (sims 41-70).

A single value for the empirical constant 
F was determined as that value which 
minimized the sum of the squared 
differences between the input Young’s 
modulus for the fi lm (10GPa) and the 
output value as computed by Eq. 5 
across all 70 fi nite-element simulations. 
Variances were not weighted. The 
value for the empirical constant 
determined in this way was F = 0.0626. 
This single value for F was used in all 
implementations of Eq. 3. 

Discussion
Unfortunately, errors in Young’s 
modulus due to errors in contact area 
(as determined by the Oliver-Pharr 
method) are easily confused with 
composite elastic response, because 
these two aspects of “substrate 
infl uence” both push the reported 
Young’s modulus in the same direction. 
That is, for compliant fi lms on stiff 
substrates, the tendency toward pileup 
can cause the Young’s modulus to be 
artifi cially infl ated due to the calculation 
of contact areas that are too small. 
This artifi cial infl ation might easily be 
attributed to the increased composite 
stiffness, because both effects 
push the reported Young’s modulus 
higher with increasing indentation 
depth. Similarly, for stiff fi lms on 
compliant substrates, the tendency 
toward excessive sink-in can cause 
the Young’s modulus to be artifi cially 
defl ated due to the calculation of 
contact areas that are too large. This 
artifi cial defl ation might easily be 
attributed to the decreased composite 
stiffness, because both effects push 
the reported Young’s modulus lower 
with increasing indentation depth. Thus, 
if the Oliver-Pharr method is used to 
determine contact area (as it is in most 
commercially available instruments) 
then the application of Eq. 3 should 

be restricted to indentation depths 
which are less than 20% of the fi lm 
thickness. But if the problem of errant 
contact areas were solved by means of 
advanced modeling or microscopy, then 
Eq. 3 could be used at depths as great as 
40% of the fi lm thickness. 

Conclusions
An elastic fi lm-substrate model, Eq. 3, 
has been proposed that accurately 
relates the apparent shear modulus 
obtained from an instrumented 
indentation experiment to the shear 
moduli of fi lm and substrate, thus 
allowing the extraction of fi lm modulus 
if substrate modulus and fi lm thickness 
are known. The model works well for 
both compliant fi lms on stiff substrates 
and vice versa. If the Oliver-Pharr 
model is used to determine the contact 
area, then the fi lm-substrate model 
should not be used at indentation 
depths greater than 20% of the fi lm 
thickness. However, if contact areas 
are determined by another method that 
accurately accounts for pile-up and sink-
in, then the fi lm-substrate model can be 
used at indentation depths as great as 
40% of the fi lm thickness. 

Figure 7.  Young’s modulus vs. normalized indentation depth for 30 simulations of indenting into stiff 
fi lms (E = 10GPa) on compliant substrates. Solid symbols are substrate-affected results obtained 
by standard analysis; open symbols are the Young’s modulus of the fi lm, computed by Eq. 5.  
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