NEW
インピーダンス測定の品質評価
インピーダンス測定の品質評価についてご紹介しています。
続きを読む
NEW
インピーダンス測定の品質評価についてご紹介しています。
続きを読む
NEW
複数電流レンジによる高確度測定についてご紹介しています。
続きを読む
NEW
電解動作中のインピーダンス測定についてご紹介しています。
続きを読む
NEW
起動停止模擬試験による水電解セルの耐久評価についてご紹介しています。
続きを読む
本文書では、マルチチャネルポテンショスタット(VSP-300、BP-300、VMP-3、VMP300)が回転リング-ディスク電極システムで実験を行うための原理と方法を紹介します。
続きを読む
電気化学分野でインピーダンス測定を行う場合にはいくつかの適用条件があり、線形性・不変性・因果性の3点になります。実際、サンプルが定常状態に達していない場合、インピーダンス測定の適用条件を満たすことができず、測定結果に影響を及ぼします。
続きを読む
パルスボルタンメトリーのテクニックは、主に非常に低濃度のイオン(1e-6 ~ 1e-9 mol/L)を検出するために使用される電解分析の測定テクニックです。これらのテクニックは特に容量(充電)電流を最小化し、ファラデー電流を最大化することによってボルタメトリックポーラログラフィーの改善の為に考案されました。
続きを読む
生物細胞の分析、燃料電池の試験、塗膜材の評価、セメントペーストの品質管理など、電気化学インピーダンス分光法(EIS)は電気化学の様々な分野において有効な手法となっています。EISは非破壊かつ高感度な測定手法ですが、正しいデータを得るためには見落とされがちな基本的な注意点があります。本稿は、高インピーダンス系、低インピーダンス系それぞれにおいてEIS測定を用いるときに、セル以外の部分にある誤差要因とその影響を明らかにすることを目的としています。。
続きを読む
固体電解質とは、電子ではなく、Li + 、Na + や、F - 、Cl - などのイオンを通じる固体を指し、水や溶媒を全く含んでいないものです。普通の“円筒型乾電池”は実は“湿電池”であり、その中に含まれる電解質は塩とのりを水で練ったものが用いられています。 これら固体電解質の特性評価を交流インピーダンス測定で行う時の利点について、説明いたします。
続きを読む
Bio-Logic社のポテンショスタット/ガルバノスタットの製品ラインナップは、別の機器によって取得された外部アナログ信号を記録できるように設計されています。機器には、2つの補助アナログ入力が装備されていて、2つのアナログ電圧を補助信号として記録します。EC-Lab®ソフトウェアの設定(External Devices)を行うことで、外部機器によって測定される元の信号と同じラベル(表示名)および単位で補助信号を記録できます。
続きを読む
近年、電池寿命に関する研究でクーロン効率(CE)測定が注目を集めています。従来の単純な充放電サイクル試験下で、電極/電解液が変化することによる電池寿命への影響を定量化するためには非常に長い時間が必要です。従来の充放電サイクル試験に対し、CE測定を用いることで3-4週間と短い期間で電池寿命への影響を定量化できます。また、異なるセルの安定性を比較/評価することもできます。
続きを読む
インピーダンスアナライザのインピーダンス測定確度は、インピーダンスの大きさと測定周波数に依存します。ポテンショ/ガルバノスタットとインピーダンスアナライザの仕様は、確度マップ [1] と呼ばれるグラフにより与えられます。このアプリケーションノートでは、ユーザーがインピーダンス測定の確度マップについて理解を助けることを目的としています。
続きを読む
IRドロップ②で示した通り、EIS測定は電解液抵抗R Ω (または、未補償抵抗Ru)を求める優れた手法です。R Ω は、作用電極と参照電極の間の電解液抵抗だけでなく、配線などといった作用電極自体に寄与するすべての抵抗値の和として定義されます。 本ノートの目的はインピーダンス測定のテクニック(ZIR)を用いてIRドロップの決定、補正を行い、ZFitを用いることなくR Ω の値を求める方法を述べることです。また、本ノートの一部では、いくつかの測定系におけるこの手法の制限についても言及します。
続きを読む
オーミックドロップ(以下、IRドロップと記載します)とは、材料を通る電子の流れに起因する過電圧を意味します。電気化学では一般的に、電解液の抵抗や、表面の薄膜や接続によって起因する電圧を表します。 Application Note #27で解説されている通り、IRドロップは実験結果に大きな影響を与えることがあります。そのため、この抵抗値をどのようにして決定するかを知る必要があります。 電気化学インピーダンス分光法や電流遮断法といった、様々な測定手法が使用可能です。このアプリケーションノートは、この2つの手法を比較することを目的としています。
続きを読む
オーミックドロップ(以下、 IR ドロップと記載します)とは、材料を通る電子の流れに起因する過電圧を意味します。電気化学では一般的に、電解液の抵抗や、表面の薄膜や接続によって起因する電圧を表します。 このアプリケーションノートで以降に記載されますが、 IR ドロップは測定結果に影響を与え、結果の解析の誤差要因となります。このノートでは、いつくかの電気化学測定における IR ドロップの影響に焦点をあてて解説します。
続きを読む
EISは、ある状態の電気化学系の研究において、界面で起こる反応の性質を理解するために使用される有効な測定手法であり、電位または電流の正弦波を印加することで得られる測定系の線形応答解析により求められます。 上記で定義したEISを使用するには、研究対象となる反応系について様々な要件を満たす必要があります。
続きを読む
ユーザがEC-Lab®ソフトウェアで良好な測定結果を得ることをサポートすることです。そのために、いくつかの重要なポイント(接続方法、ケーブル長、実験条件など)の詳細を以下に記載します。
続きを読む
ある電気化学系においてナイキスト線図のプロットは、半円の中心が実数軸の下に位置し、つぶれた半円を描くことがあります。この特性は、電極の表面が荒い場合に起こります。 このつぶれた半円は、通常シミュレーションやフィッティングをする場合、R(Resistance)とC(Capacitance)の並列回路(R/C回路)の代わりにRとQ(constant-phase element, CPE)の並列回路(R/Q回路)を使用します。Cの代わりにQを使用する場合、疑似容量(Pseudo Capacitance)と呼ばれる等価容量を計算すると便利です。
続きを読む
EC-Lab®およびEC-Lab®Expressでは、SPEIS(Staircase Potentio Electrochemical Impedance Spectroscopy)テクニックを使用して、電位ステップ掃引中に連続でインピーダンス測定を行うことが可能です。このテクニックを使用することにより、各電位ステップにおけるインピーダンス測定を自動で実行することができます。この技術の主な使用目的は、定常分極曲線に沿った電気化学の反応速度を調べることです。電流制御であるSGEISテクニックを用いた際にも同様の測定を行うことが出来ます。
続きを読む
電気化学分野でインピーダンス測定を行う場合にはいくつかの適用条件があり、線形性・不変性・因果性の3点になります。実際、サンプルが定常状態に達していない場合、インピーダンス測定の適用条件を満たすことができず、測定結果に影響を及ぼします。
続きを読む